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Abstract
Unmanned aerial vehicles (UAVs) have been widely used in both civilian and military

fields nowadays. Early applications mainly focus on imaging area due to the diffi-

culty in collecting clean audio data. However, there are huge demands for airborne

audio applications. In this thesis, the possible solutions for airborne audio applica-

tions of UAV are investigated. Here, a number of frequently used filters for audio

signal processing such as median filter, FIR filter, adaptive filters are addressed. It also

reveals how these filters will help UAV audio applications according to their specific

features. The hardware and software implementation of a real-time audio signal pro-

cessing system is designed on ZYBO, which is a development board using Xilinx Zynq-

7000 all programmable ARM/FPGA SoC. This design follows the concept of hardware

and software co-design. The results show that ZYBO platform is efficient and robust

enough to support UAV airborne real-time audio signal processing.
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Chapter 1

Introduction

This thesis work aims at exploring audio signal processing on Unmanned Aerial Ve-

hicle (UAV) applications. UAVs have been widely used in both civilian and military

fields nowadays. Early applications mainly focus on imaging area due to the difficulty

in collecting clean audio data. However, there are huge demands for airborne au-

dio applications. In this thesis, the possible solutions for airborne audio applications

of UAV are investigated. Several frequently used filters for audio signal processing

such as median filter, FIR filter, adaptive filters are introduced. It also reveals how

these filters will help UAV audio applications according to their specific features. The

hardware and software implementation of a real-time audio signal processing system

is designed on ZYBO, which is a development board using Xilinx Zynq-7000 all pro-

grammable ARM/FPGA SoC. This design follows the concept of hardware and soft-

ware co-design. The results show that ZYBO platform is efficient and robust enough

to support UAV airborne real-time audio signal processing.

This chapter will discuss basic concepts about UAV and how its applications affect

our lives at first section. Then it provides a brief introduction to the real-time system.

Possible audio applications of UAV will be discussed in the following section where

corresponding problems are summarized. The last section introduces the structure of

this report.

1.1 Unmanned Aerial Vehicle

UAV, also commonly referred to as drone, is an aircraft with no human pilot or passen-

gers. These vehicles rely on many different sensors, i.e., altimeter, GPS receiver, cam-

eras, etc., to control the flight through an onboard computer when a programmed flight

plan is available. The vehicle can also be operated remotely by a pilot at the ground

control station (GCS). Drones can be powered using jet propulsion, piston engine, or
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electric motors. Construction wise, they can be classified as fixed-wing, rotary-wing,

or multi-rotor, and Figure 1.1 shows their typical appearances.

FIGURE 1.1: Three types of UAV: fiexed-wing, rotary-wing, multi-rotor.

UAVs can be used in both military and civil applications. Their popularity has grown

fast in the last decade, and new applications are still being developed at a steady pace.

Besides using UAV directly as the attack weapon, there are many other applications

for drones in the battlefield, e.g., military network relay and battlefield circumstance

surveillance;or may be even used as a cyber-power in the future. For civilian use, fixed-

wing UAVs like aviation models are very popular among amateurs, and they are also

used in agriculture and mapping. With the rise of multi-copter, more applications are

explored based on its stable, easy control, and high payload, e.g., aerial photography,

disaster victims rescue (Wolfe et al., 2015), cellular network reinforce (Afonso et al.,

2016), Wi-Fi internet access (Gu et al., 2015), video surveillance (Qazi, Siddiqui, and

Wagan, 2015), sensor network data collection (Say et al., 2016), sniper localization sys-

tems (Fernandes et al., 2015), etc. These applications show highly demands on signal

processing because of the reliability requirement and rugged working environment of

UAVs. A former research (Shao, Ramos, and Apolinário Jr., 2016) about UAV applica-

tions specialized in data transmission field has been made, in this research, the focus is

audio signal processing on UAV applications.

1.2 Real-time Systems

Real-time is one critical characteristic for most embedded systems. It requires the input

signal has to be responded within a specified period. The end of this finite period is

called deadline and the delay time between input signal creation and response is called

latency. A real-time system must be designed carefully to ensure no input signal are

missed. Considering the meeting deadline condition, real-time systems can be classi-

fied into three patterns: hard real-time system, firm real-time system and soft real-time
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system. The hard real-time system requires the deadline must be hit. Only a few sys-

tems like nuclear weapon, pacemaker have this requirement. Firm and soft real-time

systems allow failure to meet the deadline. For the firm real-time system, the missed

response to a request will be meaningless. A good example is forecast system. While

in the soft real-time system, the missed response is not worthless, but it will degrade

with the time passes, the telephone meeting system is a typical soft real-time system.

UAV flight control system is a real-time system, and it has a critical time requirement

for controlling command response. Furthermore, more and more real-time applica-

tions based on UAV platform are appearing, since UAVs, primarily multi-rotors be-

come cheap and reliable recently. (Wu and Zhou, 2006) explored the real-time UAV

video processing for quick response to natural disaster. (Shi et al., 2016) built a vision-

based real-time 3D mapping system on UAV. (Varela et al., 2011) shows a swarm intel-

ligence based approach for real-time UAV team coordination in search operations. For

now, we can hardly find research related to real-time audio signal processing applica-

tions on UAV. In this study, a real-time audio signal processing hardware platform is

built, and some digital audio filters will be tested on this real-time audio signal pro-

cessing system specifically for UAV applications.

1.3 Audio Signal Processing demands on UAVs

Though UAVs have been used in a variety of applications, there are limited researches

on audio related applications. (Santano, 2014) shows a research demo in audio visual

data acquisition for first person view (FPV), but there is no special processing for audio

data. (Furukawa et al., 2013) depicts an improvement on sound source localization

(SSL) system from multi-rotor UAV, but it is not focused on audio signal itself. To

bring more possibility to audio signal processing on UAV, this research is conducted.

There are three types of digital audio filters will be employed in this paper. According

to their characteristics, some possible applications on UAV are illustrated.

The median filter is famous for its using on noise reduction of imaging processing,

it can also be used in noise reduction of specific audio signal like old vinyl records.

(Borzino et al., 2015) shows an median filter application on enhancing gunshot audio

recorded by UAVs for direction of arrival estimation. This thesis will focus on how

to implement a real-time gunshot enhancement median filter on UAV platform, and

related experiments is also designed to test the results.

Finite impulse response (FIR) filter is a simple and easy to implement signal processing

component. FIR filter can be implemented to low-pass, high-pass or band-pass filters

in digital audio signal processing. One important application of audio application on
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UAV is providing speech communication between help seeker and rescuers. The sound

collected by airborne microphone normally contains other noise from the environment.

The human auditory system is just sensitive to the audio frequency range from 20Hz to

20KHz, so we can use FIR band-pass filter to decrease noise, or extracting the desired

frequency domain without noise from other frequencies. Moreover, knowing the most

of the energy in a speech signal is present in lower frequencies, may below 2kHz, so

we can use an FIR low-pass filter to narrow interference above the frequency away.

Adaptive FIR filter is another kind of FIR filter that can literately adjust its coefficients

to output desired signals. One of the most important reasons that UAV is not popu-

lar in audio applications is the noise from UAV working environment including pro-

pellers, wind, etc. Propeller vibration is the primary source of noise that affecting

sound collection from UAV platform. So removing the propeller noise will signifi-

cantly improve the quality of audio signals, adaptive noise filter will be addressed in

this research .

1.4 Structure of the thesis report

The second chapter introduces methodologies and technologies used by this research.

The concept about hardware and software co-design will be introduced at first. Then

the relevant technologies about audio signal processing are introduced, including dig-

ital signal processing processors, floating and fixed arithmetics, and circular buffer. At

last, it interprets communication protocols used by this design.

Chapter three demonstrates detailed information about digital audio signal processing

procedure. Median filter, FIR filter, and adaptive filter based on the normalized least

mean square (NLMS) algorithm are frequently used on audio signal processing appli-

cations. On this chapter, the basic concepts of these filters are depicted. Their possible

applications in different fields will be discussed separately.

Chapter four focuses on the implementation of real-time digital signal processing on

ZYBO. It is the combination of hardware and software design. The hardware design

is implemented on Xilinx Zynq AP SoC. The complete hardware platform contains

threes parts: ARM Contex-A9 processer, SSM2603 coder-decoder (Codec) chip, and

its controller implemented on FPGA using Verilog Language. Software design section

shows program realization of fixed-point filter algorithms.

In chapter five, the experiments of different filters on real-time digital audio platform

are conducted, and final results are evaluated.
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The last chapter summarizes the whole research. It concludes that the performance of

real-time signal processing platform can totally fulfill the requirements of some specific

audio processing applications on UAV. The possible future work is also presented on

the end.
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Chapter 2

Methodologies and Technologies

2.1 Hardware and Software Co-design

In the embedded system field, hardware means single clock synchronous digital cir-

cuits created using word-level combinational logic and flip-flops. These circuits can be

modeled with building blocks such as registers, adders, and multiplexers. Cycle-based

hardware modeling is often called register-transfer-level (RTL) modeling. Software

means single-thread sequence programs, written in C or assembly. They will be able

to implement the various sections of memory (global, stack, heap), and provide the

techniques to control different kinds of memory (registers, caches, RAM, and ROM),

Normally we choose C because it matches so well with actual execution model of a

typical microprocessor. Figure 2.1 shows a simple hardware design, an RTL circuit; list

2.1 shows a brief software design, a list of C codes. As defined in book (Schaumont,

2010), hardware and software co-design is the partitioning and design of an application

regarding fixed and flexible components.

LISTING 2.1: Software example.

# include < s t d i o . h>

i n t na tura l_genera tor

{

i n t a = 1 ;

s t a t i c i n t b = −1;

b += 1 ;

re turn a+b ;

}

Table 2.1 depicts the history of hardware and software co-design (Teich, 2012). Hard-

ware software co-design emerged basically as a new discipline to design complex in-

tegrated circuits (ICs) in the early 1990s. From that time to today, it has experienced

three generations of evolution, from 2012 to now, the fourth generation of hardware

software co-design is on the way.
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D Q

CLK

Combination logic Register

FIGURE 2.1: Hardware example.

TABLE 2.1: Hardware and software co-design history

Generation Years Major achievements

1 -1995 hardware software bi-partitioning for CUP-
ASIC target

2 1995-2004 Co-simulation & PBD (platform-based design)
for complex targets

3 2005-2011 DSE(design space exploration)& Co-synthesis
for Het(Heterogeneous). Multi-core Designs

4 2012- New variants of co-design emerge;
Online co-design for adaptive Systems;
Co-design of systems of Systems;
Co-design for dependability;
...

Hardware can provide high performance, energy efficient solutions, while software

can significantly reduce cost, shrink schedule and decrease complexity. A good man-

aged hardware and software co-design will balance their advantages and disadvan-

tages, so the concept of hardware and software co-design is applied on this research.

The signal processing algorithms and configuration are conducted by program run-

ning on processor, while audio Codec chip controller is implemented on FPGA.
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2.2 DSP processors versus ARM-based processing

systems

ARM and DSP are two types of microprocessors. A microprocessor is an integrated

circuit implemented on a silicon chip with central computing unit (CPU), and it has

internal memory, and the whole system operates based on binary logic. The purpose

of a microprocessor based signal processing system is getting digital data from the

input, processing them and outputting processed data.

DSP stands for digital signal processing and it can be any kinds of processes working

on digital data operating. The DSP processor is specially designed for digital signal

processing. The main goals of a DSP process is to filter, measure, or compress a digital

signal or analog. It normally includes an analog-to-digital converter (ADC) which can

transform real-world analog signals to digital signals. Moreover, the processed digital

signals may be converted back to an analog signals with a digital-to-analog converter

(DAC). DSP processors are widely used in audio signal processing, imaging signal pro-

cessing, and sensor signal processing, among other fields. There are many manufactur-

ers specializing in DSP processors, including Analog Devices, famous for the SHARC

processor, and Texas Instruments, famous for their TMS320 family of products.

DSP processors are specially designed for manipulating a large number of complex

mathematic calculations. It is almost two or three times faster than a general purpose

microprocessor. This performance benefits from its special hardware. A DSP processor

has a different arithmetic unit architecture with specialized units like highly parallel

multipliers. Its memory uses Harvard architecture which can manipulate data and

program at the same time; also, the hardware-based circular buffer allows fetching a

stream of data at one time. These characteristics make DSP processors very popular in

the field of digital signal processing field.

ARM means Advanced RISC Machine, as its name, ARM is one number of reduced

instruction set computing (RISC) architectures microprocessors, which also including

Atmel AVR, MIPS, PowerPC, etc. The architecture of ARM processor is designed and

licensed by ARM Holdings. For now, ARM processors might be the mostly used 32-

bit instruction set architecture in the world. The most famous electronic companies

including Apple, Nvidia, Qualcomm are all using ARM microprocessor in their prod-

ucts.

Compared with other microprocessors used in traditional, ARM needs significant fewer

transistors, resulting in energy efficient, less heat and low cost. These features make

ARM processor fit for energy and cost sensitive products like mobile phone, tablet, etc.
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Also, the simpler architecture of ARM helps manufacturers to customize microproces-

sor according their applications. For the application has high-performance require-

ments, ARM provides multi-cores or high-frequency solutions to enhance micropro-

cessor performance. The flexibility of ARM processor design attracts more and more

manufacturers join this family.

Though most ARM microprocessors are designed for general usage, ARM architec-

ture provides extend options for strengthening digital signal processing performance.

ARM Cortex-M and Cortex-A architectures can provide DSP capabilities and other

technologies like NEON, multi-core, FPU. These features provide powerful support for

signal processing. Furthermore, there are lots of UAV platforms like Paparazzi UAV,

3DR, their autopilot is based on ARM microprocessor, so it worth to do research on

real-time signal processing based on ARM microprocessor. During our design, some

technologies like fixed-point calculation, circular buffer is used in our design.

2.2.1 Floating-point versus fixed-point

There are basically two kinds of calculations in digital signal processing: floating-point

computing and fixed-point computing. Floating-point computing normally need a

floating point unit (FPU) inside the processor. Also precision of IEEE-754 standard

floating number scales with the order of magnitude of your operands. For FPGA and

processor without FPU, fixed-point can provide higher performance and precision. In

the Zynq device, if we want to use FPGA accelerate signal processing, fixed-point cal-

culation is the best solution.

To represent a fraction number with the integer, we need to image that it is scaled by

a specific "scale factor." The scale factor is usually a power of 2, i.e. 2, 4, 8, 16. So we

can easily adjust the result through bits shifting in C Language. For an unsigned data

scaled by N , it will range from 0 to (2b − 1)/N , b is the number of bits to be used for

storing this number. The distance between two consequent numbers will be 1/N . For a

signed, binary scaled fixed point number, it is presented as Q format: QM.N , in which

Q stands for the sign, M is the bit amount to the left of the imaginary decimal, N is

the bit quantity to the right of the imaginary decimal. N is also the binary scale factor.

Q7.8 can represent a range from −128.996 to +127.996, its precision is 1/256. In chapter

4 DSP filter software design part, more details about fixed-point filter algrathiom will

be introduced.
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2.2.2 Circular buffer

A circular buffer is built on a sequential segment of memory, which has a specific ca-

pacity, but we can input data without limitation. Circular buffer is one type of first-in

first-out (FIFO) buffer. It has one head to point to the newest data, and a tail to point to

the oldest data. The data writing and reading for circular is conducted by moving the

position of head and tail.

In this research, a special circular buffer is designed. There is only one head used by this

circular buffer. When the circular buffer memory is full, the newest data will always

overwrite the oldest data. We can use circular buffer to store a sequence of digital

signal data, which can be utilized as input array of a filter. Every time we read all of

the data in circular buffer, so tail is not necessary. Through filter algorithm calculation,

the output signal will be updated. When the delay is acceptable, we can say this is a

real-time digital signal processing process.

x(n)

x(n− 1)x(n− 2)

x(n− 3)

x(n−N)

x(n−N − 1)x(n−N − 2)

· · ·

head

FIGURE 2.2: Circular buffer.

In DSP processor, specific hardware is optimized to for circular buffer management,

while there is no special designed circuits in ARM processor. So circular buffer must be

implemented on memory at first. Listing 2.2 reveals the typical structure of a circular

buffer implemented in C language. In this structure, buffer_start and buffer_end store

the start and end addresses of this circular buffer respectively in memory, they will be

initialized when a circular buffer is defined. The capacity is to clarify the maximum of

data can be stored in this circular data, if the oder of filter coefficients is N , then capacity

is N + 1. The data size, meaning how many memory units will be used for storing one



Chapter 2. Methodologies and Technologies 11

item of data, is kept by sz, for example, the int16_t data has a size of 2. The head will

always point to the address of the newest data in this circular buffer.

LISTING 2.2: Software circular buffer.

typedef s t r u c t c i r c u l a r _ b u f f e r

{

void ∗ b u f f e r _ s t a r t ; // data b u f f e r

void ∗buffer_end ; // end of data b u f f e r

s i z e _ t c a p a c i t y ; // maximum number of items in the b u f f e r

s i z e _ t sz ; // s i z e of each item in the b u f f e r

void ∗head ; // pointer to head

} c i r c u l a r _ b u f f e r ;

x(n)

x(n− 1)

x(n− 2)

x(n− 3)

x(n−N)

x(n−N − 1)

x(n−N − 2)

· · ·

head

buffer_start

buffer_end

FIGURE 2.3: Circular buffer in memory.

Figure 2.3 shows how the circular buffer work in memory. When new data come, head

will increase one unit of data size. In the real memory, buffer_start and buffer_end have

different addresses, So head has to be relocated to buffer_start when it reaches buffer_end.

When the circular is full, the newest input data x(n+ 1) will overwrite the oldest data

x(n − N), so the arrangement of input data array x(k) always start from newest data

and end with oldest data, as shown on Equation 2.1.

x(k) = [x(k) x(k − 1) · · · x(k −N)]T. (2.1)
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2.3 Inter-chip communication protocols

Communication protocols are standards or rules that defined for information exchange

between two or more different systems. There are vast of protocols designed for spe-

cific situations. In this design, mainly three type communication protocols are used:

AXI bus for communication between the ARM processor and FPGA fabric based In-

tellectual Property (IP), I2C and I2S for communication between SoC and Codec chip,

and they are utilized for chip configuration and audio data transmission respectively.

2.3.1 Advanced eXtensible Interface

AXI, which means Advanced eXtensible Interface, is part of ARM advanced micro-

controller bus architecture (AMBA) open standard. AMBA standard is the de facto

standard for on-chip communication designed by ARM. The current version of AXI is

AXI4. Xilinx is a significant contributor to AXI standard. In Zynq device, AXI4 is used

for communication between the processor and IP blocks implemented on FPGA. There

are three kinds of AXI4 connections as shown in Table 2.2 (Crockett et al., 2014). They

can be selected according to requirements for communication.

TABLE 2.2: AXI patterns

Name Description

AXI4 It is one memory-mapped link, one address can
support up to 256 data words transfer.

AXI4-Lite It is also a memory-mapped link, but one ad-
dress only supports one data transfer.

AXI4-stream It is not memory-mapped link. This kind of link
can transfer unlimited size of data, and it is de-
signed especially for high-speed data streaming
without address mechanism.

In the above definitions, AXI4 and AXI4-Lite links are memory mapped, that means

an address in memory space has been assigned to the master of this link.

In the SSM2603 Controller IP design, AXI4-stream is used for DMA data transmission,

which requires hight speed transaction. The IP can directly transfer digital audio data

without the control of the processor. AXI-Lite is used for SSM2603 register configura-

tion. Every register has specific addresses on memory space. So we can directly write

configuration to the SSM2603 register. Moreover, we can read register to get SSM2603

setting or state. In this design, digital audio data are directly read from register through

the AXI4-Lite link.
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2.3.2 Inter-integrated circuit protocol

The inter-integrated circuit (I2C) protocol is originally invented by NXP. It is designed

for low speed and short distance communication between chips on the same board or

nearby. There are two wires needed for the I2C bus: SDA for serial data transaction

and SCL as the serial clock.

I2C is a widely used protocol for IC communication and one important reason is that

its hardware connection is pretty simple. Only two lines with pull-up registers are

needed, so the chip will also just use two pins for I2C communication. In most sit-

uation, there are one master and several slave chips connected with the I2C bus, but

each slave should have a unique address. The master will build communication with

one slave through this address at one period. The time sequence of I2C is quite simple,

even microcontroller without I2C interface can easily implement this protocol by using

two GPIO pins and a timer.

SDIN

SCLK

START ADDR RW ACKACKACK SUBADDRESS DATA STOP

S P1To71To7 1To78 889 99

FIGURE 2.4: I2C generalized timing diagram.

Figure 2.4 from the SSM2603 data sheet (Devices, 2013) depicts the generalized timing

diagram of I2C bus. As we can see, in ideal condition, SDA and SCL are keeping

heigh level. The master always creates the SCL serial clock when the I2C bus starts to

work. There are start condition and stop condition to start or stop an I2C command.

In both conditions, SCL must keep high, and a high to low change of SDA indicates

command start, while a low to high of SDA stands for command end. When one-bit

data transmitted on I2C bus, the SCL must keep high level stable. In our design, we

use SSM2603 controller to control SSM2603 through the I2C bus.

2.3.3 Integrated Inter-IC Sound bus

I2S stands for Integrated Inter-IC Sound bus, and it is designed for transmitting digital

audio data between devices, e.g. analog-to-digital converter (ADC), digital-to-analog

converter (DAC) , digital signal processor, etc. In our design, I2S is in charge of au-

dio data stream between SSM2603 and its controller. This bus is also designed with
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concept of flexibility and simplicity. For a two channel time-mixed audio data, there

are 3 wires be used: SDA and SCL for serial data and clock, and a word select line for

channel identification, which is also called called "left-right clock (LRCLK)". Figure 2.5

illustrates the basic timing diagram of I2S from the SSM2603 data sheet (Devices, 2013).

RECLRC/PBLRC

BCLK

RECDAT/PBDAT

LEFT CHANNEL RIGHT CHANNEL
1/fs

11 22 33 4 NN XXXX

X=DONT CARE

FIGURE 2.5: I2S timing diagram.

The SSM2603 data sheet also introduces three kinds of structures for I2S connection, as

shown on Figure 2.6. Their only different is which one is used as the master. In our

design, there are two I2S channels are built for original digital audio signal input and

processed data output. The SSM2603 controller works as the master in both conditions.

TRANSMITTER

TRANSMITTER

TRANSMITTER RECEIVER

RECEIVER

RECEIVER

CONTROLLER

SCK

SCK

SCK

WS

WS

WS

SD

SD

SD

MASTER = TRANSMITTER MASTER = RECEIVER

MASTER = CONTROLLER

FIGURE 2.6: I2S structures.
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Chapter 3

Overview of Digital Signal Processing

Signal processing is a branch of technology that makes data collected from real word

around us meaningful. It is the heart of many modern high devices technologies used

in our life today. Signal processing powers a range of fields including voice assistant,

autopilot car, 5G telecommunication, robotics, etc, among the newest technologies that

are making our future. It may be classified by the field of application in video signal

processing, imaging processing, audio signal processing, wirelessing communication

processing, financial signal processing, etc. Another possible classification can be ana-

log and digital signal processing. In both domain, continuous-time and discrete-time

signal, a signal processing system can be labeled linear and nonlinear system.

In this chapter, we will focus on digital audio signal processing and several commonly

used filters: meidan filter, FIR filter, and adaptive filters.

3.1 Digital Audio Processing

Digital signal processing (DSP) manipulates digitized signals with the purpose of fil-

tering, measuring, compressing and sound reproducing. An analog signal processing

system is built by electronic components like resistors, capacitors, transistors, etc; it is

cheap and easy to assemble, but it would be difficult to modify after the design is fin-

ished. While a digital signal processing system is a little complex on hardware, it nor-

mally contains four components: computing unit, data memory, program memory and

I/O interfaces. Table 3.1 shows a detailed explanation about them. A well-designed

digital signal processing system can provide flexibility of modification, since it is fully

configured and controlled by software. A DSP system also has better performance than

an analog system because it usually has more flexibility when compared to hardware

limitations.

Digital audio signal processing is one of signal processing applications that specializes

on intentional alteration of acoustic signals to achieve a specific goal. The audio signal
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TABLE 3.1: Digital signal processing system components

Name Description

Computing Unit is responsible for mathematical calculation, pro-
cessing tasks and managing data and program
memory.

Data Memory stores digital data, works closely with program
memory.

Program Memory stores programming instructions.
I/O interfaces provides different kinds of communication inter-

faces with the outside world.

processing is conducted by using digitized data. Figure 3.1 shows a general procedure

of digital audio signal processing. Analog input collects the analog signals from de-

vices like microphone, MP3 player, or electronic musical instruments. Then the ADC

will transform them to digital signals. The digitized signal will be manipulated in the

discrete-time systems, e.g. in a DSP processor, an ARM processor, or in an FPGA fabric

for a specific purpose. The processed digital signal will then be converted to an ana-

log signal and reproduce in an analog output device like speaker, headphone. There

are dedicated microchips which combine ADC, DAC, and analog signal amplification

functions. SSM2603 is one kind of coder-decoder(Codec) chip specially designed for

digital audio signal processing, and it will be used in our hardware implement.

Analog input Analog output

ADC DAC
Signal
Processing
System

Analog input signal Digitized signal Processed digital signal Processed analog signal

FIGURE 3.1: Digital audio signal processing.

In the field of signal processing, a filter is a device or process that can add some effect

to the original signal. The effect can be either signal separation or signal restoration. A

filter can attenuate some specific frequencies from the original signal, which can help

to reduce interfering signals and suppress background noise. It can also be used for

signal restoration, which means a corrupted signal might be enhanced with the help of

a properly designed filter.

As previously mentioned, there are two categories of filters in signal processing: ana-

log filters and digital filters. An analog filter has high-speed, low-cost and provides

wide-range support on frequency and amplitude, while digital filter can provide very
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high performance; it is also easy to simulate and design. Therefor, in a great number

of situations, digital filters are used for signal processing applications.

The reminding sections of this chapter will mainly focus on reviewing to three kinds

of commonly used digital signal filters, and points out their potential on UAV applica-

tions.

3.2 Digital Filters

A discrete-time system using a sequence x(k) signals as input, has an output y(k)

through a transformation expressed as in

y(k) = T{x(K)}, (3.1)

T{} is the system function. A digital filter corresponds to a linear and linear and time-

invariant function which can be expressed as by a different equation.

There are two primary types of discrete-time filters which can be used on digital signal

filtering: infinite impulse response (IIR) and finite impulse response (FIR). FIR filter

has finite duration impulse response, which will settle to zero in a finite period. Table

3.2 shows pros and cons of FIR filters. Because the advantages of FIR filters is more out-

standing than disadvantages, so they have more applications than IIR. In this research,

FIR filter is used to implement specific application.

TABLE 3.2: Advantages and disadvantages of FIR filters

Advantages

always stable
simple to implement compared with IIR
might achieve linear phase
startup transients have finite duration
design methods are generally linear

Disadvantages
filter order is higher than IIR to achieve same
performance
delay is bigger than IIR since higher order

3.2.1 FIR Filters

If the discrete-time FIR filter has order N . The output y(k) is the weighted sum of input

x(n) with filter coefficients array:

[w0 w1 · · · wN ], (3.2)



Chapter 3. Overview of Digital Signal Processing 18

as shown in

y(k) = w0x(k) + w1x(k − 1) + · · ·+ wNx(k −N) =
M
∑

i=0

wix(k − i). (3.3)

The impulse response of x discrete convolution is

h(n) =







wn n = 0, 1, · · · , N,

0 otherwise.
(3.4)

Figure 3.2 from (Oppenheim and Schafer, 2011) shows the direct form realization of an

FIR system.

z−1 z−1z−1z−1z−1

y(k)

x(k) x(k − 1) x(k − 2) x(k −N)x(k −N − 1)

h(0) h(1) h(2) h(N − 1) h(N)

FIGURE 3.2: FIR filter.

There are many kinds of FIR design methods, multiband with transition bands method

is used in this thesis. To design an FIR filter for real-time audio digital streaming data,

we need to decide coefficients array at first. MATLAB R© provides tools usued in this

work (functions "firpmord" and "firpm") that helps the design of efficient (in the mini-

max sense) FIR filters.

FIR filters are usually used for frequency selection, e.g. low-pass filter, band-pass filter,

hight-pass filter. These filters have wide range of applications in radio, audio, imaging

fields. Also, it is an important part of adaptive filters, which has continually changing

coefficients adjusted by a specific adaptive algorithm, more details will be introduced

in next section.

3.2.2 Median Filter

For a set of values, the median M is the value that can separate this set to two halves,

with that the number of values smaller than M is equal to the number of values lager

than M . Considering that the sorted set x(n) has N values; the median M of this set

should be:
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M =







x(N−1

2
) if N is odd,

1

2
[x(N

2
) + x(N

2
+ 1)] if N is even.

(3.5)

As we can see, in order to obtain the median value, the values should be sorted at first,

and then median can be decided by Equation (3.5). Hence, the process to calculate the

median value from a group of numbers is a nonlinear operation. Single value in the

list with a very small or large magnitude does not influence the median, so it is robust

regarding to outliers.

Median filters are well-known for their applications on image and audio processing.

It is a nonlinear digital filtering technique for noise reduction. The most common use

of median filter might be removing some noise, salt and pepper noise, in imaging

signal processing. In the field of digital audio signal processing , median filters are also

routinely used on noise reduction. One example is signal enhancement for gunshot

direction of arrival (DOA) estimation (Borzino et al., 2015). The recorded audio data

are typically processed on a powerful computer and there is no problem in off-line

applications. Otherwise, if the median filter is to be implemented in real-time, there

could be a problem due to the need of a delay to store the set of samples and sorting it .

In this research, we will explore the use of real-time median filter for UAV applications.

3.3 Adaptive Filters

Similar to FIR filter, an adaptive filter system has a group of coefficients, it can cre-

ate the output signal similarly to Equation (3.3). However, it also can continuously

compare its output signal with the desired signal, and modify coefficients with the

comparison result through an adaptive algorithm. With the power of digital signal

processing system increasing, more and more applications are using adaptive filters.

Figure 3.3 shows the block diagram of a general adaptive filter. There are two inputs in

this diagram: x(k) stands for the original input signal; d(k) stands for reference input

signal, which is the desired signal we hope output to be. The output signal is y(k),

and another signal e(k), which is called error signal is used to adjust coefficients of the

filter. m represents the discrete sample number. If the order of coefficients or weights

is N , the weight vector w of adaptive filter would be:

w = [w0 w1 · · · wN ]
T. (3.6)

since,
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_

Adaptive

Filter

y(k)

e(k)

d(k)

w

x(k)

+

Σ

Adaptive

algorithm

FIGURE 3.3: Basic configuration of an adaptive filter.

x(k) = [x(k) x(k − 1) · · · x(k −N)]T. (3.7)

Then we can calculate the output of y(k):

y(k) =
N
∑

i=0

wix(k − i) = w
T
x(k). (3.8)

The error signal is generated by removing the output signal y(k) from the desired sig-

nal d(k):

e(k) = d(k)− y(k) (3.9)

The objective of an adaptive filter is to minimize the function applied to the error sig-

nal which is carried out for the adaptive algorithm. In some specific applications, the

adaptive algorithm tries to make error signal e(k) approximate to zero and finally gen-

erate a signal at the output without undesired noise or interference signals. However,

in other application, the error signal might be the interested signal, as the adaptive

noise cancellation. It will addressed in the following subsection.

3.3.1 The LMS and NLMS Algorithms

To achieve the above objective, we need to design the adaptive algorithms to optimize

the coefficients. LMS and NLMS are two algorithms routinely used by adaptive filters.
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Least Mean Squares (LMS) algorithm was raised by Professor Bernard Widrow and his

student, Ted Hoff in 1960 at Standford University. It is one kind of adaptive filter that

can literately adjust its coefficients to create the desired filter, which will produce the

least mean square of error signals.

For a conventional LMS algorithm, Equation (3.10) shows how the weight vector is

updated. Here, x(k) is the input signal and e(k) is the error signal. µ is the step-size or

convergence parameter.

w(k) = w(k − 1) + µx(k)e(k), (3.10)

LMS is mostly used algorithm because of its stable and easy to implement. However,

its convergence is slow in many applications. The performance of the LMS algorithm is

highly dependent on the input signal condition, on the filter order and on the step-size

µ.

Another important drawback of LSM is that it is quite sensitive to the scale of the input.

A variant of the LMS algorithm called Normalized least mean squares (NLMS) is pro-

posed. At first, in LMS algorithm, the step-size µ is fixed for a specific scale of the input

signal, while in the general environment, the scale of the input signal is unknown. In

the NLMS algorithm, the size of µ is variable, depending on the square mean of the

input signal vector. The updating equation of the NLMS algorithm expressed as

w(k) = w(k − 1) +
µ

ǫ(k) + xT (k)x(k)
x(k)e(k). (3.11)

ǫ(k) is a small positive constant, keeping ǫ(k) = ǫ leads to a so-called ǫ-NLMS algo-

rithm (Yousef and Sayed, 2001). This version of NLMS algorithm is usually used by

practical implementations because the ǫ can prevent the occurrence of division by zero.

(Ramos et al., 2017) shows real-time implementations of acoustic signal enhancement

techniques for aerial based surveillance and rescue applications powered by NLMS

algorithm.

3.4 Adaptive Noise Cancellation

The basic concept of adaptive noise cancellation is to remove the noise from a received

signal to improve the signal-to-noise ratio (SNR). One of its most useful applications

is to reduce the propeller noise from audio collected by microphones on UAVs. In the

rescue scenario, if the rescue team can directly communicate with people who needs

help through UAV, it will be significantly helpful. However, the precondition in this
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s(k) + n(k)

n̂(k) = x(k) y(k)

e(k)

d(k)

w(k)
ŝ(k)

+

−
Σ

Adaptive Filter

ADC

ADC

Signal of

interest

Propeller

noise

FIGURE 3.4: Adaptive filter noise cancellation setup.

application is that the input signal to the adaptive filter is correlated to the noise col-

lected by the airborne microphone while uncorrelated to the signal of interest. In this

application, we can use the adaptive filter to remove propeller noise while retaining

the audio we need.

A propeller noise cancellation system is shown on Figure 3.4. In this figure, s(k) is the

audio signal we want to acquire, but we can not get it directly, since it is corrupted by

noise signal n(k). We only collect s(k) + n(k). To separate n(k) from s(k), we need to

use an adaptive filter.

In this adaptive noise cancellation setup, s(k) + n(k) is used as reference signal or de-

sired signal. Another highly correlated version of the noise component, n̂(k), is used

as input signal, x(k). The coefficients w(k) are iteratively modified by the adaptive al-

gorithm, the NLMS in this work. Such that the adaptive filter output y(k), will be close

to the noise component n(k). The error signal e(k), denoted as ŝ(k), will approximate

the signal of interest s(k). A NLMS algorithm based adaptive filter will be addressed

for propeller noise cancellation application on UAV.
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Chapter 4

Real-time Digital Audio Filters

Implementation

4.1 Development environment

FIGURE 4.1: ZYBO.

The ZYBO (ZYnq BOard) is a development board designed for Xilinx Zynq-7000 All

Programmable SoC. It is built based on Z-1010, one enter-level chip of the whole Zynq

family. The Z-1010 has a duel-core ARM processor tightly combined with FPGA fabric.

There are abundant resources e.g., audio and video I/O, USB and Ethernet interfaces,

on-board memory, SD slot, etc., are ready on board, which can support users imple-

ment their design easily. It also provides six Pmod ports for extending needs. The

support for JTAG programming and debugging, UART to USB conversion makes the

work of developer easy. The size of ZYBO is pretty small compared with other Zynq
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platforms like Zedboard, which make it fit for airborne usage. Based on the above

reasons, ZYBO is chosen as the hardware platform of this design.

To handle development on ZYBO, we need an efficient and user-friendly development

environment. Luckily, Xilinx provides a series of integrated development environment

(IDE) to help us in the design flow. In this design, Vivado is used for hardware design

and SDK is used for software design.

4.1.1 Vivado

Vivado is released in April 2012 by Xilinx for edit, simulation, synthesis, analysis and

implement of Hardware Description Language (HDL) design. Vivado is a design en-

vironment for Xilinx FPGA products, and it supports devices including Ultrascale,

Virtex-7, Kintex-7, Artix-7, and Zynq-7000. Vivado changes design flow for HDL and

adds new features for SoC development and high-level synthesis comparing with ISE,

which is an old fashion IDE for Xilinx products before Vivado appearing.

FIGURE 4.2: Vivado IDE overview.

The newly designed Vivado is very friendly to Zynq device development. The devel-

oper can even finish their hardware design by connecting standard IP blocks and con-

figuring them without writing HDL codes. It also provides IP tools so that developers

can develop their IP block with the desired function. These features can provide good

support for our hardware design. The newest version of Vivado is 2016.04 for now,
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which is used as our hardware development environment. The overview of Vivado

IDE is shown in Figure 4.2.

4.1.2 SDK

Xilinx Software Development Kit (SDK) is another useful IDE specialized for embed-

ded software development on Zynq-7000 AP SoCs, MicroBlaze soft-core implemented

on FPGA fabrics and Zynq UltraScale+ MPSoC. The SDK provides C/C++ source code

editor and compilation environment. Moreover, it has a powerful debugger which

supports common debug functions, e.g., breakpoint setting, stepping execution, vari-

able value check, etc. It allows developers conduct software application development

on the hardware platform created through Vivado IDE. After finishing hardware de-

sign through Vivado IDE, the developer can export the customized hardware design to

SDK, then SDK will atomically initialize software development environment param-

eters for the developer, including bitstream file for FPGA programming, peripheral

drivers, compiler setting, library path, memory map, etc. These automatic configura-

tions will help developer focus on their application development, and boost develop-

ment process.

FIGURE 4.3: SDK IDE overview.

The same version of SDK is used in this design to keep compatible with Vivado, which

should be installed with Vivado from the same installation package. The overview of

SDK IDE is shown in Figure 4.3.
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4.2 Hardware Design

The whole system is implemented on ZYBO, which has been introduced in section 4.1.

It is obvious that we do not need all of the components on board for our real-time

digital audio processing platform. Figure 4.4 shows the system architecture and table

4.1 explains three main components of it.

FPGA

Zynq

ARM

processor

SSM2603

SSM2603

controller
AXI

I2C

I2S

ADC DAC

Audio IN Audio OUT

FIGURE 4.4: Real-time signal processing system architecture.

TABLE 4.1: Real-time digital audio signal processing components

Name Description

Processor It is a dual-core ARM Cortex-A9 processor, one
part of Xilinx Zynq-7000, AP SoC architecture.

Audio Codec IC SSM2603 from Analog Devices, providing
stereo, 48 kHz sampling rate, 16-bit ADC and
DAC conversion in this case.

Codec IC controller It is implemented on FPGA part of the Zynq
SoC, specially designed for I2C and I2S pro-
tocols communication between ARM processor
and SSM2603.

In this section, the three critical components and how they are used in our design will

be introduced.

4.2.1 Zynq SoC

The core of the whole system is Zynq SoC, which consists of two parts: Processing

System (PS) is a dual-core ARM Cortex-A9 processor, and Programmable Logic (PL) is

the FPGA fabric.



Chapter 4. Real-time Digital Audio Filters Implementation 27

The PS section is not just composed of an ARM processor. Instead, it is a whole pro-

cessing system which contains a series of resources forming application processing unit

and peripheral interfaces, memory interfaces, different kinds of ports to communicate

with FPGA, etc. PS is a "hard core", which is fixed and optimized on the silicon wafer.

Comparing with MicroBlaze processor which can be located in the logic fabric of an

FPGA, PS can provide higher performance with lower power consumption.

The PL section in Zynq is mainly composed of general purpose FPGA logic fabric and

Input/Output Blocks(IOBs) for interfacing. It also contains DSP48E1s and Block RAMs

for special use. The PL has some hard IP components for dedicated functions: analogue

to digital conversion, clocks and JTAG for programming and debug.

In our design, PS support software design so that we can using C language program-

ming the whole process for signal processing. PL is used for implementing high-speed

data transmission. PS and PL are connected through AXI protocol.

4.2.2 ARM Processor

As we have introduced in former content, a dual-core ARM Cortex-A9 processor is the

critical component of PS. The business model of ARM company is to authorize Original

Equipment Manufactures (OEMs) using ARM processor IP in their product. There are

flexible configurations OEMs can choose when designing their product. Xilinx is one of

the OEMs, and it integers ARM Cortex-A9 processor into their Zynq device with FPGA

fabrics. Figure 4.5 shows the architecture of ARM processor inside Zynq. ARM Cortex-

A9 can have 1 to 4 cores, Xilinx specifies a dual-core processor. The Level 1 cache used

as data and instructions buffer between processor and memory, it could be 16KB, 32KB

or 64 KB, and Zynq chose 32KB Level 1 cache. MMU is memory management unit.

There are also some optional elements that ARM processor can have, Zynq includes

NEON extension FPU which is very help for digital signal processing (DSP).

NEON/FPUNEON/FPU

MMUMMU
ProcessingProcessing

Core 0 Core 1

L1(D)L1(D) L1(I)L1(I)

FIGURE 4.5: ARM Cortex-A9 processor in Zynq.
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The ARM processor supports a set of assembly instructions. Through Xilinx Software

Development Kit (SDK), the developer can implement programs or algorithms by us-

ing C/C++ language. The SDK will help user compile codes to assembly instructions.

Details about the software development will be introduced in software design part.

4.2.3 Audio Codec Chip

FIGURE 4.6: Audio interfaces on ZYBO.

SSM2603 is one audio chip from Analog Devices, which is widely used on portable

electric products, e.g. mobile phone, mp3 player, etc. SSM2603 supports low power

consumption and high-quality stereo audio Codec. The sampling rate is up to 96kHz

and working environment temperature vary from -40◦C to +85◦C. Its analog input sup-

ports stereo line and monaural microphone inputs. The DAC output signals can be

presented at both the stereo line outputs and stereo headphone outputs. The digital

result of ADC can be up to 24bits per channel.

As shown on Figure 4.6, there are three 3.5mm standard audio jacks on ZYBO. Two

inputs, stereo line input and mono microphone input have blue and pink color respec-

tively. The black jack is headphone output. In this design, stereo line input and head-

phone output are chosen for audio signal input and output. The digital signal format

is 16bits, and the sampling rate is 48kHz. SSM2603 is configured by setting internal

registers, and there are nineteen 9bits registers used for SSM2603 configuration. I2C

protocol provides access to SSM2603 registers, and I2S protocol is in charge of audio

digital data transmission.

4.2.4 SSM2603 controller

SSM2603 Codec chip has been introduced in the previous section. To configure SSM2603

and implement communication with the processor, an IP called SSM2603 Controller
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FIGURE 4.7: SSM2603 controller IP.

has been designed. It is entirely implemented in FPGA part of Zynq device using Ver-

ilog Language. Table 4.2 shows the interface definitions.
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FIGURE 4.8: SSM2603 controller structure.

As shown on the Figure 4.8, the SSM2603 controller IP has five parts which help to re-

alize different functions. The I2S_rec_dma and I2S_pb_dma blocks are used in record

mode and playback mode for DMA data transmission, they are not utilized by this de-

sign. The I2S_reg specifies register position and definition for SSM2603 configuration.

I2S_sio is the I2S interface implement, and I2C_ctl realize the I2C control interface for

SSM2603. On the top level of this IP, it provides AXI-Lite and AXI-stream interface to

communicate with the ARM processor. Different blocks in this IP cooperate with each

other to make the audio signal processing work smoothly.
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TABLE 4.2: IP interfaces description

Name Description

s,
s_ARESETn,
s_ACLK

AXI4_lite Slave interface

m,
m_ARESETn,
m_ACLK

AXI4_stream master interface

mclk Clock input, connecting to FCLK_CLK2 12.288MHz, used
to create digital audio bit clock.

I2S_RECDAT Input signal, I2S SDA wire for transferring record data
(ADC process).

I2S_MUTE Output signal, DAC mute.

I2S_PBDAT Output signal, I2S SDA wire for transferring playback data
(DAC process).

I2S_BCLK Output bit clock for SSM2603, I2S SCL wire for transferring
digital audio data (ADC and DAC processes).

I2S_PBLRC Output signal and specifies left-channel or right-channel of
digital audio on I2S bus in playback mode.

I2S_RECLRC Output signal and specifies left-channel or right-channel of
digital audio on I2S bus in record mode.

I2S_MCLK Master clock output to SSM2603, it equals to mclk, and it
affects the sampling rate of ADC.

I2C_SDAT I2C 2-Wire Control Interface Data Input/Output

I2C_SCLK I2C 2-Wire Control Interface Clock Input.

4.3 Software Design

Chapter 2 has discussed the comparisons about floating-point versus fixed-point, cir-

cular buffers in DSP processor and general processor. In this research, filers are de-

signed by C Language and executed on ARM processor, so fixed-point arithmetic and

software circular buffer are the basic techniques used on software design. Since the

memory based software circular buffer design has been introduced in section 2.2.2, its

structure is simple and general, so it can be used by any kind of filter input data man-

agement. The software design now focus on fixed-point implement of median filer,

FIR filter and NLMS adaptive filter.

4.3.1 Fixed-point FIR filter implementation

The implement structure of fixed-point FIR filter is shown in Figure 4.9. The digital

audio data samples created by ADC is n-bits signed integer and n is 16 in our case.
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The top one bit stands for sign and other 15 bits represent absolute value. According

to equation 3.3, y(k) is multiply accumulate result of x(k) and W(k).

MAC

y(k)
x(k)x(k)x(t) y(t)Input

vector

FIR filter

w(k)

ADC DAC∗

Legend:
n ❀ word length.

2−n+1
❀ Scale factor.

MAC ❀ Multiply accomulate.

⊛ ❀ Convolution.

n n

n

2n 2−n+1

FIGURE 4.9: Fixed-point FIR filter implementation structure.

In this FIR software design, fixed-point arithmetic is used in multiply accumulate cal-

culation. The coefficients created by MATLAB is a series of decimal numbers, and

they multiply with a scale of 215 before doing filter calculation. After weighted sum

we get the result, rounding it by add half of the scale factor which is 214, then scale

it with 215 by shifting right 15 bits before output. Listing 4.1 reveals fixed-point FIR

filter function implemented by C Language. There are three inputs required by this

function. The "coeffs" points to the start of scaled coefficients array made by MATLAB.

The "cb_input" is the pointer of circular buffer structure, it will provide the entry of

x(k). The "filterLength" is the value of k. In the end of this code listing, the final result

of y(k) is downscaled by shifting 15 bits to right.

LISTING 4.1: Fixed-point FIR filter implemented by C Language.

// FIR f i l t e r funct ion

i n t 1 6 _ t f i r F i x e d ( i n t 1 6 _ t ∗ c o e f f s , c i r c u l a r _ b u f f e r ∗ cb_input ,

i n t f i l t e r L e n g t h ) {

i n t 3 2 _ t acc ; // accumulator f o r MACs

i n t 1 6 _ t ∗ coe f fp ; // pointer to c o e f f i c i e n t s

i n t 1 6 _ t ∗ inputp ; // pointer to input samples

i n t k ;

// c a l c u l a t e output n

coef fp = c o e f f s ;

//point inputp to the o l d e s t data

i f ( cb_input−>head == cb_input−>buffer_end ) {

inputp = cb_input−>b u f f e r ;

} e l s e {

inputp = cb_input−>head ;

}

// load rounding constant

acc = 1 << 1 4 ;
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// perform the multiply−accumulate

f o r ( k = 0 ; k < f i l t e r L e n g t h ; k++) {

//when the input array pointer point to the end of buffer , jump to

b u f f e r s t a r t

i f ( inputp == ( cb_input−>buffer_end ) ) {

inputp = cb_input−>b u f f e r ;

}

acc += ( i n t 3 2 _ t ) (∗ coe f fp ++) ∗ ( i n t 3 2 _ t ) (∗ inputp ++) ;

}

// s a t u r a t e the r e s u l t

i f ( acc > 0 x 3 f f f f f f f ) {

acc = 0 x 3 f f f f f f f ;

} e l s e i f ( acc < −0x40000000 ) {

acc = −0x40000000 ;

}

// convert from Q30 to Q15

return ( i n t 1 6 _ t ) ( acc >> 15) ;

}

4.3.2 Fixed-point NLMS adaptive filter implementation
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FIGURE 4.10: Fixed-point arithmetic implementation structure for the
NLMS algorithm.

When implementing the algorithm using 32-bit fixed- or floating-point arithmetic, pre-

cision is not an issue, and one can focus solely on achieving the maximum computa-

tional efficiency. However, in a 16-bit fixed-point implementation, the reduced pre-

cision becomes an issue and needs to be addressed. Overflow or underflow in inter-

mediate calculations may cause the algorithm to diverge or not converging at all. For



Chapter 4. Real-time Digital Audio Filters Implementation 33

instance, in a floating-point implementation, a small step size can ensure a small steady

state error. However, a step size of the same magnitude might be too small for a 16-bit

fixed-point implementation of an adaptive filter.

Figure 4.10 illustrated the sequence that has been used in the 16-bit fixed-point im-

plementation of the NLMS algorithm. It was assumed one bit of sign, and a scaling

factor of 215. Note that downscaling (≫ 15 ≡ ÷215), implemented using a simple

right-shift (see Listing 4.2), is performed after each 16-bit multiplication, except prior

to the final division by input power xT (k)x(k). In this implementation we considered

a straightforward computation of the inner product xT (k)x(k). However, a more com-

putationally efficient implementation can achieved by updating the normalized input

power p(k) = x
T (k)x(k)/N instead of xT (k)x(k) using (Sayed, 2003)

px(k) = βpx(k − 1) + (1− β)x2(k), px(−1) = 0, (4.1)

for some forgetting factor 0 < β < 1.

LISTING 4.2: Pseudocode for the 16-bit implementation of the NLMS al-

gorithm.

f o r each new sample ( k ) do { acc = xx ( k ) = 0 ;

f o r ( i = 0 ; i < f i l t e r L e n g t h ; i ++) {

xx ( k ) += ( ( i n t 3 2 _ t ) ( x [ i ] ) ∗ ( i n t 3 2 _ t ) ( x [ i ] ) ) > >15; // MAC with s c a l i n g

acc += ( i n t 3 2 _ t ) ( ( i n t 3 2 _ t ) ∗w[ i ] ) ∗ ( i n t 3 2 _ t ) ( x [ i ] ) ; // MAC

}

y ( k ) = ( i n t 1 6 _ t ) ( acc >> 15) ; // Converting from Q30 to Q15

e ( k ) = d ( k ) − y ( k ) ;

d e l t a = ( i n t 3 2 _ t ) ( (mu ∗ ( i n t 3 2 _ t ) e ( k ) ) >>15) ;

f o r ( j = 0 ; j < f i l t e r L e n g t h ; j ++)

weights [ j ] += ( i n t 1 6 _ t ) ( ( d e l t a ∗ ( i n t 3 2 _ t ) x [ j ] ) /(1 + xx ( k ) ) ) ;

}

4.3.3 Median filter implementation

The critical component of median filter is how to get median value from an array con-

taining 16-bits audio signal data. Listing 4.3 depicts the C function of median value

fetching. There are two arguments in this function, x is the start address of circular

buffer, n is the same with the length of circular buffer. Every time when it is executed,

all digital data inside circular buffer will be sorted in ascending order, the median value

will be returned according to equation 3.5. The value of n should be neither to big or

to small. A big n will bring unnecessary load to processor and increase delay time be-

tween input and output. A small n will decrease median filer performance and make

it useless.
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LISTING 4.3: Median fetch function implemented by C Language.

i n t 1 6 _ t median ( i n t 1 6 _ t n , i n t 1 6 _ t ∗ x ) {

i n t 1 6 _ t temp ;

i n t 1 6 _ t i , j ;

// the fol lowing two loops s o r t the array x in ascending order

f o r ( i =0 ; i <n−1; i ++) {

f o r ( j = i +1; j <n ; j ++) {

i f ( x [ j ] < x [ i ] ) {

// swap elements

temp = x [ i ] ;

x [ i ] = x [ j ] ;

x [ j ] = temp ;

}

}

}

i f ( n%2==0) {

// i f there i s an even number of elements , re turn mean of the two

elements in the middle

re turn ( ( x [ n/2] + x [ n/2 − 1 ] ) / 2) ;

} e l s e {

// e l s e re turn the element in the middle

re turn x [ n / 2 ] ;

}

}
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x(k)

x(k)x(t) y(t)

m(k)

Median filter

ADC DAC

Input

vector

+
+

−

FIGURE 4.11: Gunshot enhancement median filter implementation.

In the UAV based gunshot DOA introduced by (Borzino et al., 2015), the input vector

x(k) is not replaced by its median directly. The purpose of this median filter is to

enhance the muzzle blast component to improve the follow-up DOA estimation. The

original sound is modeled as the combination of pure gunshot signal and unwanted

residual. Through the median filter, we get the estimate unwanted residual. So the

enhanced gunshot signal can then be easily computed as x(k) − m(k). Figure 4.11

shows the whole process of the gunshot enhancement median filter implementation.
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Chapter 5

Experiments and results

On this chapter, we will discuss filters design and simulation on MATLAB. A series of

experiments are designed and conducted to verify the performance of real-time audio

signal processing on ZYBO. The results are recorded by the oscilloscope, and corre-

sponding analysis about performance will be made.

5.1 Median filter experiments and results
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FIGURE 5.1: Gunshot audio signal cleaned by median filter.

In this experiment, the median filter is used to clean the gunshot audio signal noise.

The objective of this application is to get a clearer edge between the gunshot happened

time and other time, and also decrease the white noise. Here we use a gunshot audio

created by a rifle. This audio file is recorded at a close distance (236m) from the shoot-

ing position. As explained on equation 3.5, N is chosen at first. It should be neither
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too big nor too small. After a series of test, 30 is chosen. Figure 5.1 shows the results of

conducting median filter cleaning on MATLAB. The filtered signal shows more clear

edge compared with the original signal.

FIGURE 5.2: Median filter real-time comparison results.

An experiment is designed to verify the real-time median filter. Figure 5.2 show the

real-time comparison between original gunshot audio signal and the signal cleaned by

median filter on ZYBO. It clearly shows the gunshot happening part and significantly

decreases other noises.

5.2 FIR filter experiments and results
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FIGURE 5.3: FIR frequency response.
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This experiment will help us to test FIR filter performance on this real-time digital au-

dio processing platform. By using multi-band with transition bands method on MAT-

LAB, I designed a band-pass FIR filter with frequency response around 1KHz. Since

we use fixed- point arithmetic on ZYBO platform, the final coefficients are multiplied

by 215. Figure 5.3 depicts the frequency response of this band-pass FIR filter.
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FIGURE 5.4: Audio samples comparisons on time and frequency domains.

FIGURE 5.5: FIR original channel compared with real-time filtered chan-
nel.

This FIR filter is implemented and debugged on computer at first. It can only filter

fixed audio file. By inputing an audio sample, we can get the filtered audio sample,

which should only keep the frequencies around 1KHz. Figure 5.4 shows the compar-

isons between original audio signal and filtered audio signal on frequency domains.
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The blue signal is the original signal, and the brown signal is filtered signal. As we can

see, the frequencies around 1KHz are kept, while other frequencies are significantly

weakened. This test reveals that the coefficients of this FIR can properly achieve our

original target.

The final purpose of this experiment is test the FIR filter performance on the real-time

audio signal processing platform. We hope that real-time FIR filter on ZYBO has the

same performance with FIR filter implemented on laptop. In order to verify this hy-

pothesis, a comparison is made. As shown in Figure 5.6, two signals are connected

with oscilloscope channels. The green signal is filtered signal created by the real-time

signal signal processing platform, and the yellow signal is previously filtered by com-

puter program. They are played on the same time track. As we can see, the two signals

almost overlap with each other. It shows that real-time FIR filter on ZYBO almost has

the same performance with FIR filter implement on the laptop.

FIGURE 5.6: Comparison between filtered signal and real-time filtered sig-
nal.

5.3 NLMS adaptive filter experiments and results

The convergence property is very critical to an adaptive filter. A 16-bit fixed-point

implementation of NLMS adaptive filter was carried out using the C programming

language at first. This implementation was tested and debugged in a laptop and then

adapted to the ZYBO. Figures 5.7 and 5.8 show results for a 16-bit fixed point imple-

mentation of the NLMS algorithm. In this particular example, a system identification

setup is considered in order to evaluate the convergence properties of this algorithm.

Note that, in this case, the theoretical dynamic range is of approximately 90 dB, equiv-

alent to 6 dB per bit. The adaptive filter parameters are the same on both experiments
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and were set as follows: filter order N = 500; sampling frequency Fs = 48 kHz; step size

µ = round(0.05 ·215) = 1638. The unknown system is a bandpass filter centered around

1 kHz. Two different scenarios for the stop band attenuation have been considered: 40

dB (Figure 5.7) and 60 dB (Figure 5.8). In the first case, the system was identified with

great accuracy, whereas in the second one, the effects of misadjustment and roundoff

errors due to the reduced precision are evident on the side lobes. However, both cases

exhibited similar performances in terms of the minimum Mean Square Error (MSE)

attained.
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FIGURE 5.7: Fixed-point 16-bit implementation results using the NLMS
adaptive filter to identify an ’unknown’ passband filter with a stop band

attenuation of 40 dB.

Another experiment is built to verify the performance of NLMS adaptive filter on UAV

noise cancellation application. The setup for this experiment is shown in the Figure

3.4. A short period of music will be used as signal s(k), and recorded propeller noise

is used as noise n(k) and x(k). The output signal would be e(k), if this filter has good

performance, the output signal should sound quite similar with original music signal.

Figure 5.9 shows the real-time comparison between Signal and Error output, channel

1 is the clear audio signal, channel 2 is the Error output, which is created from NLMS

adaptive filter though input propeller noise and audio signal corrupted by propeller

noise. As we can see, the two single we collected form different channels is almost

same. It indicates that it is possible for UAV to collect real-time clear surrounding

audio signal without the effects of propeller noise.
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FIGURE 5.8: Fixed-point 16-bit implementation results using the NLMS
adaptive filter to identify an ’unknown’ passband filter with a stop band

attenuation of 60 dB.

FIGURE 5.9: NLMS adaptive filter real-time comparison results.
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Chapter 6

Conclusion and Future Work

During the research to explore digital signal processing applications on UAVs, a real-

time digital signal processing hardware platform has been built on ZYBO. It includes

ARM processor, SSM2603 codec chip and its controller with I2C and I2S protocols im-

plemented on FPGA part of ZYNQ AP SoC. Then three routinely used digital filters,

median filter, FIR filter, NLMS filter, are designed and simulated on Matlab with spe-

cific UAV applications respectively. To implement these filters on the real-time digital

signal processing hardware platform, circular buffer and fixed-point arithmetic tech-

nologies are used in C language based software design. At last, A range of experiments

aimed to verify the performance of these filters on real-time UAV audio signal process-

ing applications is executed. As the chapter 5 discussed, the performance of real-time

audio signal filters are almost equal to audio file based filters implemented on the gen-

eral computer. These experiments conclude that this platform is qualified for airborne

real-time audio signal processing applications on UAVs.

Though this platform can satisfy most of the basic needs for real-time signal process-

ing requirements, there are still lots of improvements can be done to make it better. In

this thesis, we just focus on the audio signal processing, but it might be used in a wide

range of digital signal processing applications on UAVs, i.e., sensor data collection,

communication data processing and compressing, etc. Since these filters are designed

for general ARM processor, which is also the choice of most UAV controller, it is possi-

ble to integrate this design into existing autopilot solutions of UAVs or implement an

autopilot on ZYBO containing these filters. With the application complexity increas-

ing, this platform will face challenges on performance. Thanks to the powerful ZYNQ

AP SoC on ZYBO, we have more options to choose. In this platform, an audio codec

chip controller already has been implemented in FPGA successfully, so it is possible

to implement the signal processing filters on FPGA. In fact, the FPGA-based hardware

filter will achieve higher performance than software filter operating on the processor.

For now, this platform can only provide processed audio signal locally on UAV, while
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most of the situation the processed signal should be translated to ground control sta-

tion (GCS), so the user can make decision according to real-time data. Digital data

processing and UAV data transmission technologies are both critical in this situation.

With the power of digital signal processing, more and more challenges on UAV based

applications will be conquered in the near future.
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